COMPASS

真の理解のためのシンプルな数学のノート

数式を枠からはみ出さずに表示するためには, 画面を横に傾けてください(532 ピクセル以上推奨).

フェルマーの小定理

フェルマーの小定理

定理≪フェルマーの小定理≫

(1)
$p$ が素数であるならば, すべての整数 $a$ に対して $a^p-a$ は $p$ の倍数である.
(2)
$p$ が素数であるならば, $p$ の倍数でない各整数 $a$ に対して $a^{p-1}-1$ は $p$ の倍数である.

証明

 $a$ が $p$ と互いに素であるとき, $a^p-a = a(a^{p-1}-1)$ が $p$ の倍数であることと $a^{p-1}-1$ が $p$ の倍数であることは同値であるから, (1) と (2) は同値である.
 (1) の証明については, こちらを参照.

問題

融合問題

問題≪フェルマーの小定理≫

 $p$ を素数とし, $k$ を $p-1$ 以下の正の整数とする. 次のことを示せ.
(1)
$k\,{}_p\mathrm C_k = p\,{}_{p-1}\mathrm C_{k-1}$ が成り立つ.
(2)
${}_p\mathrm C_k$ は $p$ の倍数である.
(3)
各整数 $a$ に対して, $a^p-a$ は $p$ の倍数である.
[奈良女子大*]

解答例

 こちらを参照.