COMPASS

真の理解のためのシンプルな数学のノート

数式を枠からはみ出さずに表示するためには, 画面を横に傾けてください(532 ピクセル以上推奨).

ベクトルの内積

コーシー=シュワルツの不等式

定理≪コーシー=シュワルツの不等式≫

 平面上, または空間のすべてのベクトル $\vec a,$ $\vec b$ に対して, \[|\vec a\cdot\vec b| \leqq |\vec a||\vec b|\] が成り立つ. 等号成立は, $\vec a,$ $\vec b$ の一方が他方の定数倍であるときに限る.

問題≪$3$ 点の最短ネットワーク問題≫

(1)
平面上の単位ベクトル $\overrightarrow{e_1},$ $\overrightarrow{e_2},$ $\overrightarrow{e_3}$ が $\overrightarrow{e_1}+\overrightarrow{e_2}+\overrightarrow{e_3} = \vec 0$ を満たすとき, $\overrightarrow{e_1},$ $\overrightarrow{e_2},$ $\overrightarrow{e_3}$ の互いに成す角をそれぞれ求めよ.
(2)
すべての平面ベクトル $\vec a (\neq \vec 0),$ $\vec p$ に対して \[ |\vec a-\vec p| \geqq |\vec a|-\frac{\vec a}{|\vec a|}\cdot\vec p\] が成り立つことを示せ.
(3)
すべての内角が $120^\circ$ 未満の $\triangle\mathrm{ABC}$ において, 内部の点 $\mathrm P$ から各頂点までの距離の和 $L = |\overrightarrow{\mathrm{PA}}|+|\overrightarrow{\mathrm{PB}}|+|\overrightarrow{\mathrm{PC}}|$ が最小になるとき, 点 $\mathrm P$ はどのような位置にあるか.
[2001 東北大*]

解答例

 こちらを参照.